Over the last couple of months I have often been asked about micro services, especially how to test them. Building a small (e.g. a micro) service usually requires a different approach towards the architecture and towards the services themselves. In many cases also the team structures changes (like Conway’s Law, just the other way around). The question that arises then is how we can “compensate” for it while testing. Or to be more precise: how to adopt our way of working to ensure a high quality software.

There are three major themes that need to be taken care of when we think about testing micro services:

  1. The many times referenced testing pyramid principle apply here as much as for a monolith. And not just for one single service. The principles are as important when it comes to testing different service’s interactions.
  2. Automation plays a key role in order to speed up your build and deployment pipelines. Maybe this applies even more for micro services than for other architectures.
  3. Its not easy to start with a good micro service landscape and there certainly is some overhead in setting things up (the first time). But the benefit of small and independent services is the fast feedback you can receive.

Testing Pyramid | Automation | Fast Feedback

The second and third points are mentioned most of the time, when someone talks or writes about working with micro services. The testing pyramid is not really new and there is not too much detail about the testing of those little services. So we will look into this even more, as indeed, there are some pitfalls you should avoid in order to have a properly testable service landscape.

If we have a look at a monolith, things are straight forward: it is pretty clear where and how to apply the testing pyramid. The basic components of our services are unit-tested, their interaction is integration tested and then there is probably one end to end test around the entire service.

The testing pyramid for a micro service. The scheme of the service is by Toby Clemson from martinfowler.com

Now a “micro” service is (in this abstraction) nothing but a small monolith. In other words: treat the service itself as you always did. Be sure that the unit test coverage is really good. Find the places where you need to test the integration and then put as few as possible (in some cases: 0) end-to-end tests on top.

Up to here, there is nothing breaking new. But any project dealing with only 1 micro service has no big issues with testing. The real problems arise, once you have two, three or many services. The big difference to the monolith-world is that you have a lot more interaction via the HTTP clients. Lets have a look at an example.

Lets assume that the product we want to build is some kind of messaging system. There are three mayor features (see green boxes in the image):

  1. The dashboard page where the user is going after login and sees a greeting. On this dashboard, also unread messages are displayed.
  2. The inbox itself, all messages can be viewed here
  3. The entire messaging system has some super strong encryption.

Although those features are very clear, we have a look at the business domains. The first domain we can identify is the user (“Finn”, the black circles). The user has a dashboard and an inbox. The second domain are the messages (yellow circles). They are displayed on the dashboard and in the inbox. The messages are also encrypted. The third domain is the encryption itself (blue circle). The encryption only works with messages.

Those circles represent the domains. If we cut our system according to the circles, we will end up with a clear domain for every service.

Service A deals with the user (and probably owns the html). Service B takes care of the messages. And Service C is doing the de-/encryption. For each single one of those services we apply – as described the testing pyramid. Then we put them together and view the entire system. And we consult our pyramid once more:

(side note: the level of tests we are discussing here is completely independent of the tools you may use. The integration tests can be PACT tests or CDCs, they could be written in Selenium or you could use Appium. But we do not want to talk about single tools here, rather about the general concept)

The single service itself is the unit. We know its properly tested and the unit is working as expected. There are a lot of tests in place to make sure this is the case. The base of the pyramid is ok.

The integration becomes very tricky. This is new and was/is not needed in the world of monolithic applications. There is one thing you really – really! – need to be aware of: test the interaction itself – and not two services.
If you have to get two services up and running to make sure that one is working properly it does not sound too bad. But if you scale and you have to get 27 services up and running to test one it just will not work. Too much complexity for a test run.
The challenge is that you will want (need) to test the integration of “your” services without the other ones. An approach that works really well are the consumer driven contract tests. It will blow the scope of this post to explain the concept here again – so I wrote a different post only about those CDCs. Make sure to dig into this!

If you got the trick with the integration, then the rest is “easy”. You will run the standard set of end-to-end tests. And once you have a good feeling about the integration and contract tests, then you will probably also reduce the amount of costly end-to-end tests. If you got all of this in place it would be perfect.

So much for the theory.

While this seems to be a simple principle, the real world looks very different. In many cases I have seen micro services being carved out of an already existing monolith. Furthermore, this usually happens under time constraints and has to be done fast.

This is exactly where a major error occurs, which afterwards propagates through the entire software development cycle: When teams start with the first, small service, the business domain is often unclear. As a result, the system with the Services A, B and C is designed not as above but very different. Remember the three major feature of our examples? Giving just a quick thought about cutting the services, many teams will cut their architecture by those features:

One service handles the dashboard (and thus needs to know about user and encrypted messages, black circle). On service handles the inbox and displays messages (and thus need to know about the user, too, as well as the encrypted messages, yellow circle). The encryption holds/stores all the messages (blue circle).

That means, that the domains of “messages” and “users” is not contained to one service, but instead propagates through the system. And this is the critical point: if we now have a look at how to unit test those domains, the units spread across the services. We need two or three services to write the unit tests. Writing integration tests becomes incredibly complex – or more accurate: hell. Then its also no wonder that some people then tend to leave the integration tests aside and rather cover the entire system by end-to-end tests. The result will look similar to this:

In this situation, the tests are most likely very unstable: as already indicated in the picture there is no clear scheme of what to test where. The integration point of the domains are randomly somewhere in the services. It will be difficult to mock things. If all services are always needed to be available it usually leads to “flakiness” of tests in pre-production environments and it becomes very hard – if not impossible – to test on a local machine. For every fail of the end-to-end tests someone needs to check the error log, in order to find out if it is a “real” error or not. Let me repeat, this is gonna be incredibly complex – or more accurate: hell.

If we then start to automate the entire thing… (you remember: fast feedback and so on) we will end up with a workload that is way beyond what we experienced with the monolith. At this point of time it is perfectly reasonable to do a reality check, whether or not things became easier with the micro services. For all teams that chose this “approach” that I have worked with, we actually figured that we did not improve compared to a monolith. But realizing this is important and valuable:

If your finding is, that it got more complicated then better stop and think how to improve. Because otherwise, as soon as you start to build more and more services and scale your application, it will only get worse. The left side shows the first example of properly cut domains, while the right side displays…, well… the other solution:

Left side: clear business domains. Right side: unclear domains lead to unclear tests.

Hence, the biggest advice I can give to people – teams (!) – that start working with smaller services is to

“Test” in time.

What do I mean? The team needs to be involved early:
Engage with the people designing the services. Talk to the business and understand the domains your are about to form in your services. And make sure that all people in your team have a clear understanding what you are doing and why you are doing this. This is the time where our role stretches far out of the testing area. This allows all of the former testers to grow out of the test manager role. We can make a real difference on the flexibility that our service landscape will provide to our business.  Please make sure, that your team and your business benefits from the approach to micro service. Show them where the pitfalls are. And guide them.

To summarize:

  1. Apply the testing pyramid. Make testing cheap and reliable. (as usual)
  2. Automate everything (that you can). Each manual step is a real show blocker in a micro service environment.
  3. Make it fast. Value the fast feedback from quick running pipelines. Be flexible.
  4. Start in time. Get a clear picture about your business domains and how you think it is – should be – reflected it in your services.

The beauty is: once testing is easy and helpful its a real cool amplifier when you continue to build and improve your system. Have fun 🙂